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Abstract

The totally ionized charged collisionless plasma at finite temperature is considered. Using
the statistical and Schwinger field methods we derive the production of photons from the
plasma by the Čerenkov mechanism. We derive the spectral formula of emitted photons by
the plasma fluctuations. The calculation can be extended to the photon propagator involving
radiative corrections.
PACS: 52.55, 52.20, 41.60B

1 Introduction

The production of photons by the plasma fluctuations is one of the problems which

form the basic ingredients of the quantum field theory (QFT) at finite temperature. This

theory has been formulated some years ago by Dolan and Jackiw (1974), Weinberg (1974)

and Bernard (1974) and some of the first applications of this theory were the calculations

of the temperature behaviour of the effective potential in the Higgs sector of the standard

model.

Information on the systematic examination of the finite temperature effects in quantum

electrodynamics (QED) at one loop order was given by Donoghue, Holstein and Robinett

(1985). They treated about calculation of mass, charge, wave function renormalization

and so on; they demonstrated the running of the coupling constant at finite temperature

and discussed the normalized vertex function and the energy momentum tensor.

The similar discussion of QED was published by Johansson, Peressutti and Skagerstam

(1986).

The finite-temperature QED, QFT and also quantum chromodynamics usually deal

with the specific processses of these theories in the heat bath of photons or other particles.
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On the other hand Ford (1982) and del Campo (1988), have considered production of

gravitons by the fluctuations of the electromagnetic field of plasma.

Fluctuations are the integral part of the thermodynamical system. The physical quan-

tities which characterize the macroscopic system in the equilibrium state are with great

accuracy equal to their average values. Neverthless, they sometime deflect stochastically

from their average values. In other words they fluctuate. The existence of fluctuations

can be considered in certain sense as the fundamental feature of the thermal system. In

such a way we can decide if the system is thermal or nonthermal. Such a criterium is im-

portant in particle physics where, for instance, the collisions of nucleons at low energies is

nonthermal; however, in the high energy regime the plasma of particles is formed with the

physical characteristics of the thermal system, where also thermodynamical fluctuations

play important role.

In this article we slightly modify the approach of Ford and del Campo and compute

the power spectral formula P (ω, t) of produced photons by the plasma fluctuations in

the framework of the Schwinger field theory. We use here the statistical methods and

Schwinger source theory for the determination of the plasma fluctuations. Because the

thermal plasma has the electrodynamical index of refraction n, the resulting effect is

the Čerenkov production of photons by plasma fluctuation. Such effect is considered in

physics, to our knowledge, for the first time and in the source theory it was never solved.

The relation to the experiments with the ionized plasma is evident and it is not excluded

it will be sooner or later experimentally investigated.

The generalization of our mathematical procedure to the situation with the photon

propagator with radiative corrections is possible (Schwinger, 1973; Pardy, 1994b; 1994c;

1994d). Then, we work with the high-temperature plasma, where the creation of pairs

occurs. The relation of our theory to the experiments with the ionized plasma and with

the plasma formed during the heavy-ion collisions is evident and can help to understand

other processes inside the plasma.

2 Formulation of the problem in source theory

The basic formula of the Schwinger source theory is the vacuum-vacuum amplitude

(Schwinger, 1970):

< 0+|0− >= e
i
h̄
W , (1)

where in case of the electromagnetic field the action W is defined as (Schwinger et al.,

1976)

W =
1

2c2

∫
(dx)(dx′)Jµ(x)D

µν
+ (x− x′)Jν(x

′), (2)

where Jµ ≡ (cϱ,J) being the conserved current and Dµν
+ (x−x′) is the photon propagator

in a medium with the index of refraction n, the magnetic permeability µ and the dielectric
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constant ε.

The explicit form of Dµν
+ (x− x′) has been obtained as (Schwinger et al., 1976)

Dµν
+ =

µ

c
[gµν + (1− n−2)βµβν ]D+(x− x′), (3)

where βµ = (1,0) and

D+(x− x′) =
∫ (dk)

(2π)4
eik(x−x′) 1

|k2| − n2(k0)2 − iϵ
(4)

with kµ = (k0,k). The Green function D+(x− x′) can be further specified as

D+(x− x′) =
i

c

1

4π2

∫ ∞

0
dω

sin nω
c
|x− x′|

|x− x′|
e−iω|t−t′| (5)

by the standard contour integral method (Schwinger et al., 1976).

The vacuum persistence probability follows from eq. (1) in the form (Schwinger et al.,

1976):

| < 0+|0− > |2 = e−
2
h̄
ImW . (6)

Using the definition of the spectral function P (ω, t)

2

h̄
ImW

d
=
∫ dωdt

h̄ω
P (ω, t), (7)

we get after some calculation (Schwinger et al., 1976):

P (ω, t) = − ω

4π2

µ

n2

∫
dxdx′dt′

sin nω
c
|x− x′|

|x− x′|
cosω(t− t′) ×

× [ϱ(x, t)ϱ(x′, t′)− n2

c2
J(x, t) · J(x′, t′)], (8)

where ϱ and J are connected with the four potential Aµ = (φ,A) according to the equation

(Schwinger et al., 1976):

∆φ− µε

c2
∂2φ

∂t2
= −1

ε
ϱ (9)

∆A− µε

c2
∂2A

∂t2
= −µ

c
J. (10)

As a consequence of the definition (7), P (ω, t) has the physical content of the power

spectrum of emitted photons. Formula (8) was applied to many interseting cases, such as

the linear motion of charge in a medium, the circular motion of a charge in this medium,

and so on. Obviously it can be applied to other complicated motion of charges in the

medium.

Formula (8) enables a determination of the spectrum of emitted photons in the case of

the finite temperature regime. When the situation is such that a charge moves linearly in
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the finite temperature medium, we get so called the finite-temperature Čerenkov radiation

which was discussed by Pardy (1989).

On the other hand it is possible to consider a case when the system is formed by

charges with density ϱ and current density J and has the temperature T . Such system

corresponds physically to the totally ionized plasma.

To our knowledge, such problem has been not so far solved in the framework of the

source theory and it is our goal to determine the spectrum of photons emitted by the

fluctuations of such system. Our article is based on the article by author (Pardy, 1991;

1994a; 1994b).

It is obvious that system in thermal equilibrium cannot produce photons by the average

charge and current densities, however, it can do it by the thermal fluctuations which are

involved in the correlation functions < ϱ(x, t)ϱ(x′, t′) > and < J(x, t) · J(x′, t′) >. A

similar problem was solved by Ford (1982) and by del Campo (1988) who have been

considered the emission of gravitons by the thermal fluctuations of the electromagnetic

field of plasma where the electromagnetic fields fluctuations has been expressed by the

correlation function of the tensor of energy and momentum Tµν of the electromagnetic

field.

Here we determine the correlation functions of the charge and current densities of

totaly ionized hot plasma by the statistical methods.

3 The correlation functions

First, let us calculate the correlation function < ϱ(x, t)ϱ(x′, t′) > at the temperature

T . To achieve this goal let us consider the specific model of plasma, namely the

plasma nonlimited in space, homogenous and totaly ionized in the state of the thermal

equilibrium. Since the ions are assumed to have large masses, their motion can be

neglected. The presence of ions forms only the necessary compensation of charge. A

plasma, where the motion of ions is absolutely neglected is called the electron plasma.

We suppose that such a plasma has an electromagnetic index of refraction and we will see

later that it is the existence of this index of refraction, which is formed by the thermal

motion of plasma particles that enables the production of Čerenkovian photons by plasma

fluctuations.

The density of electrons in a plasma is given by the relation

N(x, t) =
∞∑
α

δ(x− xα(t)), (11)

where xα(t) is the coordinate of the electron with number α. The summation concerns

electrons within the unit volume. We will supoose there is no scattering between electrons.

Then we can write

xα(t) = xα + vαt, (12)
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where xα and vα are the vector coordinate and velocity of the electron with number α at

the initial time moment t = 0. The generalization to the case with the arbitrary initial

conditions is obvious.

The statistical average value of the particle density can be introduced by the following

definition:

N0 =< N(x, t) > . (13)

Then, obviously:

N(x, t) = N0 + δN(x, t), (14)

or,

δN(x, t) = N(x, t)−N0. (15)

For the correlation function < N(x, t)N(x′, t′) > we have:

< N(x, t)N(x′, t′) >= N0N0+ < δN(x, t)δN(x′, t′) > . (16)

As a consequence of the homogenity of the ion background, the correlation function

of a charge density is related to the correlation function of particles in the following way:

< ϱ2 >= e2 < δN2 >= e2 < δN(x, t)δN(x′, t′ > (17)

and the correlation function depends only on the space and time differences. Only

correlation function of the charge density and the current density can contribute to the

formula (8), determining the spectral density of photons emitted by the fluctuations of

the charged plasma.

Obviously, for our plasma model we have (Sitenko, 1965)

< δN2 >=<
∑
α

δ(x− xα − vαt)δ(x
′ − x′

α − vαt
′) >, (18)

which is a consequence of eq. (11) and eq. (15).

Now, let us introduce the one-particle distribution function f(v) normalized by

condition

∫
dvf(v) = 1, (19)

where v = |v|.
Then obviously (Sitenko, 1965)

< δN2 > = N0

∫
dvf(v)δ(x− x′ − v(t− t′), (20)

where N0 is the density of thermal electrons.
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The non-relativistic Maxwell distribution is of the form

f(v) = (m/2πkT )3/2e−
mv2

2kT , (21)

where temparature T is measured in the Kelvin scale, and k is the Planck constant. The

generalization of eq. (21) for the relativistic situation gives the Maxwell distribution in

the following form (Sitenko, 1965):

f(v) =
1(

4π kT
mc2

K2(
mc2

kT
)
)×

c2

(c2 − v2)5/2
exp{−mc2

kT

1√
1− (v/c)2

}, (22)

whereK2(x) is so called MacDonald function with index 2 and it is defined by the equation

(Tikhonov et al., 1977):

K2(x) =
1

2

[(
∂I−ν

∂ν

)
ν=2

−
(
∂Iν
∂ν

)
ν=2

]
(23)

with

Iν(x) =
∞∑
k=0

1

Γ(k + 1)Γ(k + ν + 1)
(
x

2
)2k+ν . (24)

Now, let us determine the current density correlation function if we know that the

current density is given by the formula

J(x, t) =
∑
α

evαδ(x− xα(t)). (25)

It may be easy to show that using eq. (25) we get

< JiJj >= e2N0

∫
dvvivjf(v)δ(x− x′ − v(t− t′)). (26)

4 The power spectral formula

At this moment we are prepared to write the power spectral formula P (ω, t) which

expresses the distribution of emitted photons by the fluctuations of the totally ionized

plasma. Using equations for density correlation function (20), and the current correlation

function (26), and inserting them eq. (8), we obtain the general form for the spectrum of

photons emitted by the plasma fluctuations:

P (ω, t) = −e2N0
ω

4π2

µ

n2

∫
dxdx′dvdt′×

f(v)δ(x− x′ − v(t− t′))

(
1− n2

c2
v2
)
sin nω

c
|x− x′|

|x− x′|
cosω(t− t′), (27)
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where f(v) is given by eq. (21) in the non-relativistic limit, or by eq. (22) in the relativistic

case. It is obvious that the spectral formula does not depend on time as a consequence

of combination t− t′ in this formula.

So, in the nonrelativistic situation we get after insertion of eq. (21) in the formula

(27) and after the x′-integration the power spectral formula of produced photons by the

plasma fluctuations in the following form:

P (ω, t) =
−ω

4π2

µ

n2
e2No ×

∫
dvdxdτf(v)

(
1− n2v2

c2

)
sin nωv

c
τ

vτ
cosωτ, (28)

where we have put τ = t− t′.

As the quantity No is the number of particles in the unit volume, the x-integration

gives volume V of the plasma system; together with No, we get the total number NV of

particles in the volume V .

The second mathematical operation is the τ -integration. It is well known that

∫ ∞

−∞
dτ

sinnωβτ

τ
cosωτ = π; nβ > 1; (β = v/c) (29)

and the same integral is equal to zero for nβ < 1.

In such a way it is necessary to evaluate integral

∫
nβ>1

dvxdvydvz
1

v

(
1− n2v2

c2

)
e−

mv2

2kT . (30)

The last formula contains two integrals which can be evaluated in the spherical

coordinates. For the first integral we have:

J1 =
∫ ∞

c/n
dvve−

mv2

2kT =
kT

m
e−

mc2

2kTn2 . (31)

For the second integral we have:

J2 =
∫ ∞

c/n
dvv3e−

mv2

2kT =
kTc2

mn2
e−

mc2

2kTn2 +
2kT

m
J1, (32)

as a result of the elementary integration.

Now, if we combine eqs.(28 )–(32), we get the power spectral formula for the production

of the photons by the plasma fluctuations in the following form:

P (ω) = NV ωµ
e2

c2

(
kT

2π3m

)1/2

e−
mc2

2kTn2 . (33)

In case of the relativistic Maxwell distribution involving the MacDonald functions, the

evaluations of the integrals requires more complex technique of integration than in the

nonrelativistic case. Nevertheless, the problem is solvable.
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5 Discussion

The power spectral formula for the photons produced synergically by the thermal plasma

fluctuations and by the Čerenkovian mechanism is here derived, to our knowledge, from

the source theory and the plasma physics for the first time. It depends on the index of

refraction of the plasma. The ω-dependence is the same as in case of the original Čerenkov

radiation (Schwinger et al., 1976) and it proves that the photons are produced just by the

Čerenkovian mechanism in plasma with the index of refraction n > 1.

Although the considered effect is only the ideal version of the physical reality, it

can be related to the problems dealing with the heavy-ion colliosions in the high

energy laboratories. During such processes the quark-gluon plasma is formed with the

corresponding index of refraction. In such a way, during the thermal evolution of this

plasma the Čerenkovian photons are produced by the plasma fluctuations during the late

stage of the plasma evolution. While usually the proof of the plasma formation is the

phase transformation of nuclear matter, we have determined the Čerenkovian photons as

the possible signature of the late phase of the quark-gluon plasma formation.

The production of photons by the plasma fluctuations does not correspond to the

production of photons from the energy loss dE/dx of a heavy leptons propagating through

a high-temperature QED plasma (Braaten et al., 1991) because our process is soft process,

while the high temperature plasma is formed during the first stages of the nucleus-nucleus

collision as the very hard process.

If we relate the derived formula to the photon radiation in cosmology we deduce that

probably during the late phase of big bang the situation occured that the photons were

produced by the plasma fluctuations. On the other hand the measured dependence of the

relic radiation on frequency is in a harmony with Planckian law and it means that the

contribution by the plasma fluctuations is very small. Nevertheless, the contribution of

plasma fluctuations cannot be a priori excluded. Thus, it gives us the serious problem on

the formation of plasma at the beginning of the Universe.

At the same time the existence of the Čerenkovian spectrum during the explosion

of the supernova can inform us on the existence of the plasma phase arising during the

explosion.
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Pardy M. (1994c). The Čerenkov effect with radiative corrections, Phys. Lett. B 325,

517.

Pardy, M. (1994d). The synchrotron production of photons with radiative corrections,

Phys. Lett. A 189, 227.

Schwinger, J. Particles, Sources and Fields, Vol. I, (Addison-Wesley, Reading, Mass.,

1970).

Schwinger, J., Tsai, W. Y. and Erber, T. (1976). Classical and Quantum
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